FUEL A

Introduction to FUELLA Green hydrogen and ammonia platform

May 2024 CONFIDENTIAL *FUELLA* aims to become a leading green hydrogen and ammonia platform...

Business model:

- Developer, owner and operator of green hydrogen and ammonia plants
- Repetitive construction of standardized and modularized plants

The case for "green" ammonia:

- Ammonia is one of the most produced chemicals already, with significant demand increase expected
- Ammonia production emits > 1% of global CO2 emissions; "green" ammonia avoids 2.4 tons of CO2 per ton ammonia (vs. "grey" ammonia¹)
- Key hydrogen carrier and fuel and feedstock of the future, allowing to decarbonize hard-to-abate sectors

The case for the Nordics:

 One the of the most attractive locations for green hydrogen production, due to abundance of renewable energy

Projects:

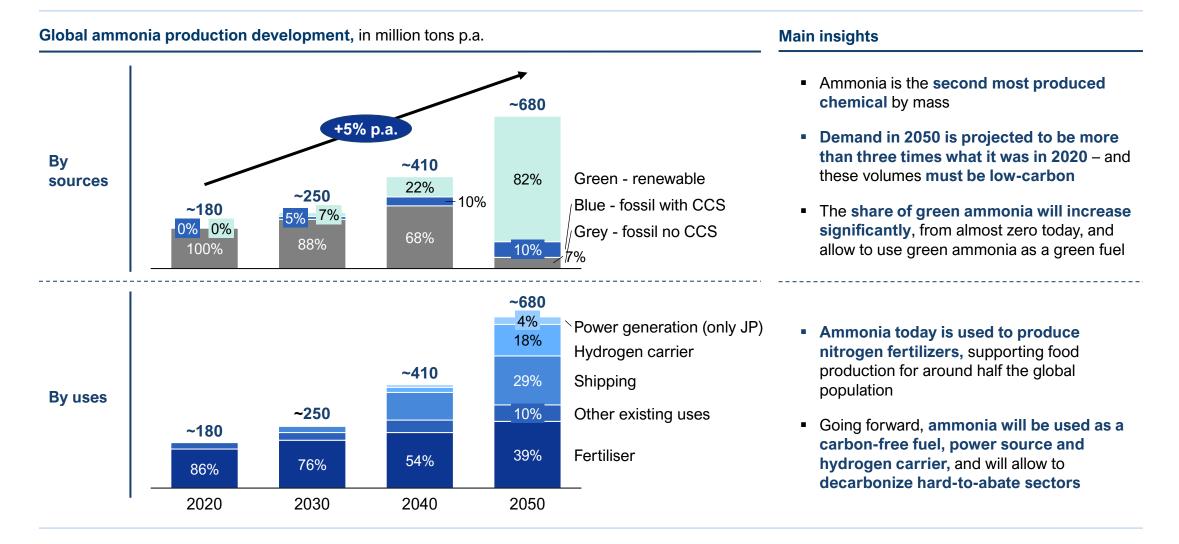
Project pipeline comprises projects in Norway and beyond

Flagship project Skipavika in Norway with FID targeted in 2024

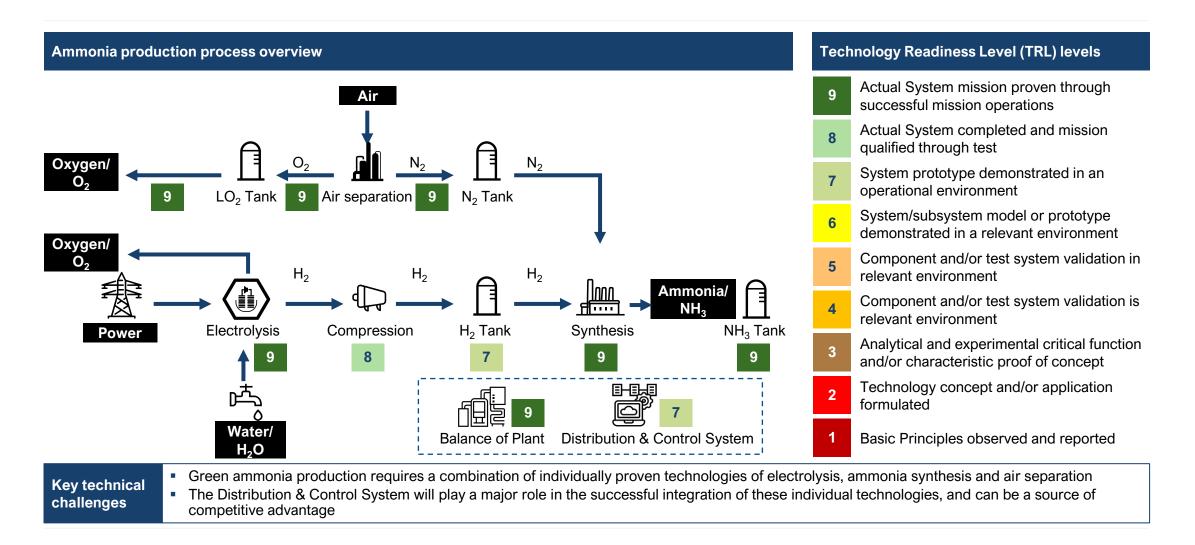
Project Skipavika

Location	Mongstad industrial site and harbour, close to city of Bergen (Norway)		
Specification	130 MW electrolyzer capacity, production capacity of 300 tons per day or 100'000 tons per year		
Jobs	50 fulltime jobs during operations		
CO_2 savings	240,000 tons, equivalent to 1/3 of Bergen city emissions ¹		
Feedstock	Renewable power, water and air		
Product	RFNBO ²⁻ compliant "green" ammonia		

¹ Global average of 2.4t CO₂ emission per tonne of ammonia produced: International Energy Agency, 2021. Planned production of 100,000 tons of ammonia per year = 240,000t CO₂ reduction per year. Bergen city's CO₂ emissions in 2020 was 736,940t CO₂ equivalent: Bergen Municipality, 2022 2: RFNBO: Renewable fuels of non-biological origin


Partnership Model: realization of hydrogen projects today requires close collaboration of partners covering the whole life cycle and value chain

Involvement of partners in consortium along lifecycle


The case for "green" ammonia: Ammonia is one of the most produced chemicals globally, with demand expected to triple by 2050, most of which "green"

FUELLA's technology strategy: FUELLA develops a new standardized technology platform for producing green ammonia, replicable across projects

What we do - combining electrolyzer technology with ammonia synthesis	 Electrolyser technology to produce hydrogen and the ammonia synthesis loop are known technologies The innovation lies in the combination of the two technologies and the development of the system knowledge FUELLA is teaming up with technology partners to develop turn-key green ammonia production plants FUELLA's technology partnership provides access to unique technology IP to be replicated towards its expanding project pipeline 					
Approach and benefits	 Standardization Repetition of the development concept at new sites Swift implementation timeline based on pre-engineered concept with long-term key equipment suppliers Reduction of costs by standardizing concept and interconnections to offsite utilities Transfer in O&M knowledge and spare parts between the plants 	 Modularization Quick adaption of key components of the standardized plants to site specificities, e.g., more flexible electrolyser technology Easy transport of modules, e.g. in containers 	 "Sweet spot" sizing Big enough to realize most of economies of scale Small enough to fit into European sites and to allow for quick permitting Focus on small hydrogen storage to minimise storage cost and permitting risks 			

Site selection: Only few sites fulfill all the prerequisites for successful development of green hydrogen and ammonia production plants

	Land availability and industrial zoning	Access to grid capacities	Access to clean power	Access to offtake and/or transport routes
Preconditions for successful development				
Number of sites that fulfill all of the requirements (illustrative):				

Projects: First two projects in advanced development in Norway, with additional global pipeline in development

Mongstad, Norway 100k t green NH3 p.a. 130 MW baseload hydropower FID 2024, COD 2027

SkiGa

KorGa Mo I Rana, Norway 200k t green NH3 p.a. 260 MW baseload hydropower FID 2025, COD 2028 **Project pipeline**

Nordics and global

>2 GW

Partnerships with RES developers, port developers etc.

Thank you!

www.fuella.no